Effects of Outriggers on Dynamic Rollover Resistance Maneuvers

Results From NHTSA's Light Vehicle Rollover Research Program

Devin Elsasser

Transportation Research Center Inc.

Garrick Forkenbrock

National Highway Traffic Safety Administration

Presentation Overview

Introduction

- Dynamic testing
- Objectives

Test Matrix

- Vehicles
- Maneuvers
- Outriggers

Testing Locations and Conditions

- Location
- Ambient Conditions

Test Equipment

- Vehicle configuration,Instrumentation and tires
- Comparison of three outrigger types

Test Results

- Results from VIMF data
- Results from dynamic testing

Discussion of Results

- Observations from dynamic testing
- Conclusions

Introduction

Dynamic Testing

- Essential part of the rollover-rating program
- Mandated by TREAD Act
- Severe nature of tests require outriggers for driver safety

Objective of Outrigger Study

- Preserve driver safety
- Evaluate outriggers with different weights and inertias
- Determine the extent to which different outrigger designs influence test results of J-Turn and Road Edge Recovery test maneuvers

Outrigger Criteria

Design criteria

- Minimize weight of outriggers
 - Reduces center of gravity influence
- Minimize roll inertia
- Lower pitch and yaw inertias
- Outrigger height adjustability
- Straight forward installation
- Center mount versus front and rear mounted outriggers

Test Matrix

Test Vehicles

- 2001 Chevrolet Blazer 4x2
- 2001 Toyota 4Runner 4x4 (VSC disabled)
- 2001 Ford Escape 4x4
- 1999 Mercedes ML320 4x4 (ESP disabled)

Outriggers

- Aluminum Outriggers
- Titanium Outriggers
- Carbon Fiber Outriggers

Maneuvers

- Slowly Increasing
 Steer
- NHTSA J-Turn
- NHTSA Road Edge Recovery
- More Maneuver and Vehicle Information
 - In NHTSA
 Phase IV report

Testing Locations and Conditions

- Inertial Measurements
 - S.E.A. Inc. Columbus, Ohio
 - -VIMF (Vehicle Inertial Measurement Facility)
- Dynamic Testing Location
 - TRC Inc. East Liberty, Ohio
- Ambient Conditions
 - ₁ 36 to 71 °F

Test Equipment

Test Vehicle Configuration

- Nominal Load
- Equipped with instrumentation
 - Further details in Phase IV report
- Steering Controller
 - Mounted to steering wheel
 - Electronics box placed in rear seat footwall

Tires

- New, same make model, size and DOT specification as supplied from manufacturer
- Pre-conditioned with 100 miles of initial service
- Inner tubes used in tires for Road Edge Recovery Maneuver

Outriggers NHTSA Aluminum Outriggers

- Designed at VRTC
- Lowest cost
- Can be produced in-house
- Height adjustment
 - End of outrigger
 - Mounts
- Castor wheels
- Weight
 - 78 lbs per outrigger (excluding mounts)

Outriggers Carbon Fiber Outriggers

- Carr Engineering
- Highest cost
- Height adjustment
 - Mounts
- Load capacity
 - 3900 lbs vertical load
- Castor wheels
- Weight
 - 58 lbs per outrigger (excluding mounts)

Outriggers NHTSA Titanium Outriggers

- Designed at VRTC
- 1/3 cost of carbon fiber
- Height adjustability
 - Mounts
- Load capacity
 - 3900 lbs vertical load
 - 1200 lbs friction load
- Low-mu hemispherical skid pads
- Weight
 - 63 lbs per outrigger (excluding mounts)

Static Test Results VIMF

Effect of Outriggers on Static Parameters

1 = least effect

3 = most effect

	iouot oilloot	<u> </u>			
Category	Carbon Fiber	Titanium	Aluminum		
Outrigger	1	2	3		
Weight	(58x2 = 116 lbs)	(63x2 = 126 lbs)	(78x2 = 156 lbs)		
Roll Inertia	2	1	3		
	(18-24%)	(17-22%)	(21-28%)		
Yaw and Pitch	1	2	3		
Inertia	(7-20%)	(8-20%)	(8-21%)		
CG Height	1	1	1		
	(2-4%)	(2-4%)	(2-4%)		

- Average combined bumper assembly weighs 100 lbs
- Instrumentation weighs approximately 150 lbs
- Outrigger mounts weigh approximately 100 lbs

Steering Angles

- Slowly Increasing Steer maneuver
- Methods presented in previous presentation
- Largest difference 4.5%

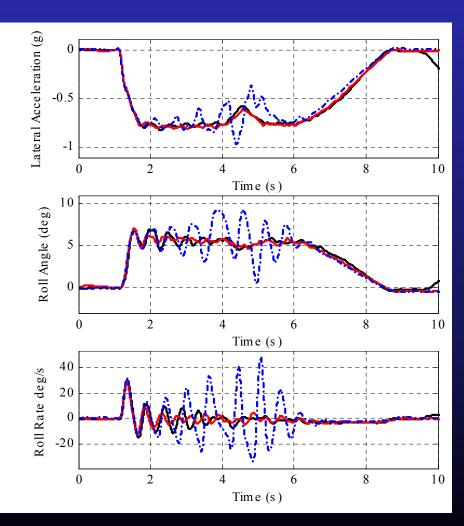
	Aluminum Outriggers		Carbon Fiber Outriggers		Titanium Outriggers	
Vehicle	RER	J-Turn	RER	J-Turn	RER	J-Turn
Toyota 4Runner	309	381	313	385	304	374
Chevrolet Blazer	326	401	329	405	326	401
Ford Escape	252	310	241	296	245	302
Mercedes ML320	273	336	262	322	272	334

Dynamic Testing Two Wheel Lift Results

		J-Turn (mph)		Road Edge Recovery (mph)	
Vehicle	Outrigger Design	Left Steer	Right Steer	Left-Right Steering	Right-Left Steering
2001 Toyota 4Runner 4x4	Aluminum	200	-		= 1
	Carbon Fiber	-	e -	-	-
	Titanium	E	-		-
2001 Chevrolet Blazer 4x2	Aluminum	-	8=	41.2	41.4
	Carbon Fiber	62.1	-	39.2	41.5
	Titanium	÷.	-	41.0	42.2
2001 Ford Escape 4x4	Aluminum	-	>->	:	-
	Carbon Fiber	-	-	(=)	-
	Titanium	4	894	823	2
1999 Mercedes ML320 4x4	Aluminum	-	2.	40.0	
	Carbon Fiber	-	>-	40.5	-
	Titanium	4	: = :	40.9	-

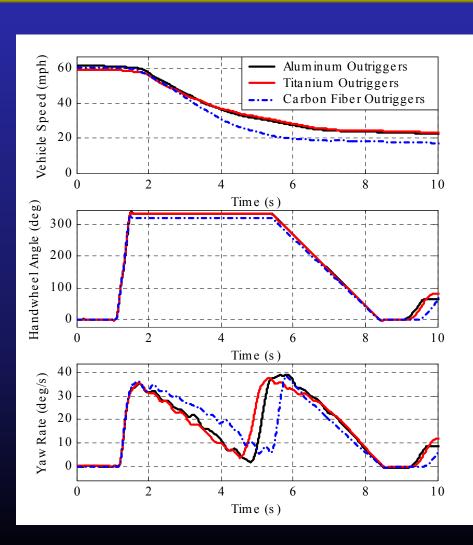
- Two-wheel lift = 2 in. or more of simultaneous wheel lift
- Determined from video data
- Entrance speed for which two-wheel lift was first noticed

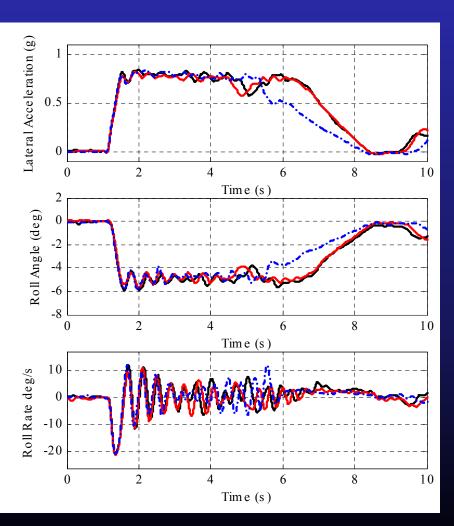
Observations NHTSA J-Turns


Chevrolet Blazer

- Carbon Fiber Outriggers
 - Produced two-wheel lift at 62 mph
 - Test cutoff speed at 60 mph
 - Threshold speed not known
- Titanium and Aluminum Outriggers
 - No two-wheel lift at approximately 61 mph
- Carbon Fiber TWL when steered to left
- Similar responses when steered to right

Chevrolet Blazer J-Turn Test


Observations NHTSA J-Turns

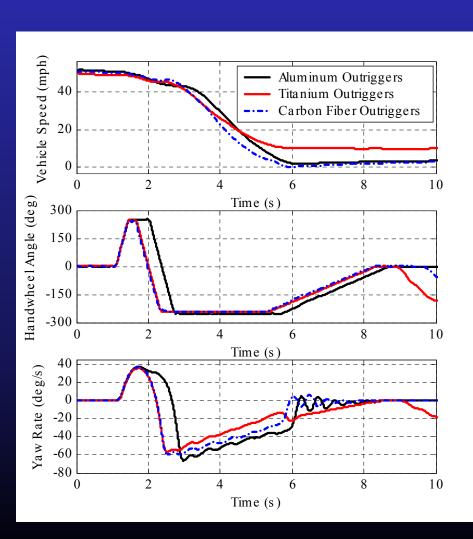


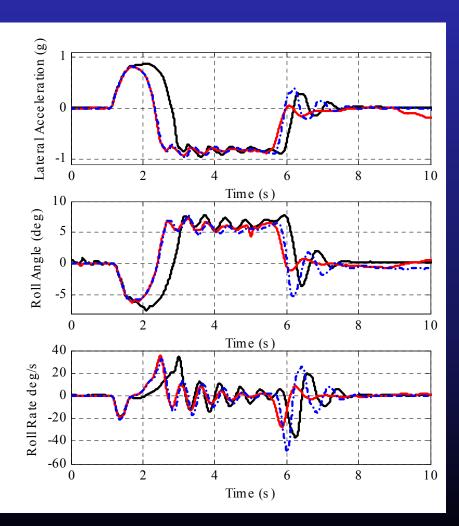
- Ford Escape, Mercedes ML320 and Toyota 4Runner
 - Slight differences in responses for some tests
 - Nearly identical responses in others

Mercedes ML320 J-Turn Test

Observations Road Edge Recovery

Roll Rate Feedback


- Previous presentation by Garrick
- More details in Phase IV report

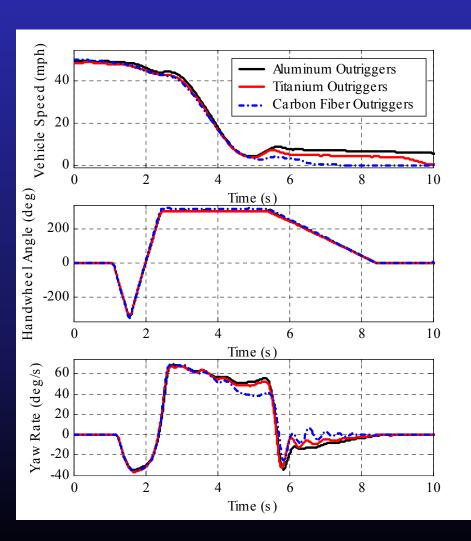

Ford Escape

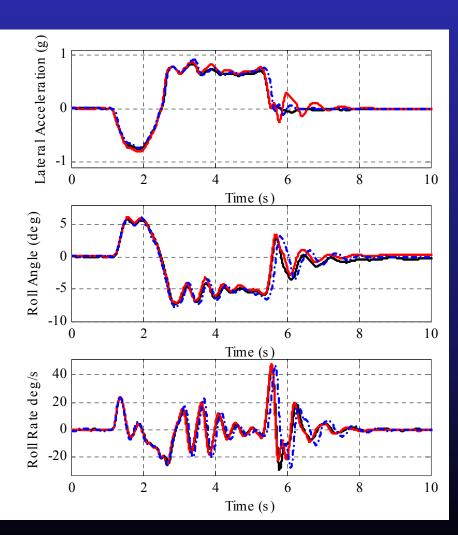
- Roll responses varied as function of which outriggers were installed
- Aluminum Outriggers
 - Extended dwell times at 40 and 50 mph

Ford Escape Road Edge Recovery Test

Observations Road Edge Recovery

Chevrolet Blazer and Mercedes ML320


Produced two-wheel lift with each set of outriggers


Toyota 4Runner

Near identical responses

Toyota 4Runner Road Edge Recovery Test

Conclusions

Vehicle Inertial Measurements

- Influenced by outriggers
- Titanium and Carbon
 Fiber Outriggers have
 least overall influence
- Titanium Outriggers have least roll inertia influence

Slowly Increasing Steer Test

- Outriggers had little influence on the overall average handwheel angles
- Largest difference 4.5%

Conclusions

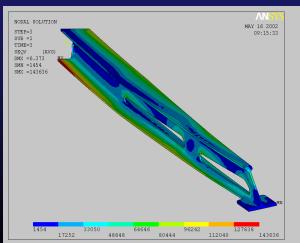
NHTSA J-Turn

- Blazer two-wheel lift
 - Not clear that two-wheel lift is related to outrigger design or testing at vehicle's dynamic threshold
- Other vehicles
 - no pronounced trends as a function of outrigger installation

Road Edge Recovery

- Escape tests
 - Differences in dwell time
- Blazer and ML320
 - Near identical TWL speeds regardless of outrigger installed
- Overall
 - Responses were very similar

Titanium Outrigger Chosen As NHTSA's Preferred Outrigger



Highlights

- Safe for driver
- Strong
- Lowest roll inertia influence of the three designs compared
- Cost less than carbon fiber
- Use light-weight skid pads
- Not much heavier than carbon fiber design

Outrigger Specifications

"Standard" Titanium Outrigger

- 3500 to 7000 lb vehicles
- 3900 lbs vertical load
- 1200 lbs friction load
- 63 lbs per outrigger

"Short" Titanium Outrigger

- Vehicles less than 3500 lbs
- 2000 lbs vertical load
- 1200 lbs friction load
- 58 lbs per outrigger

Available

In Docket: NHTSA-2001-9663-75

- Detailed Drawings
 - "Standard" and "Short" Titanium Outriggers
 - Mounts and skid pads
- Outrigger CNC code
 - Files to machine exact replicas of NHTSA's "Standard" and "Short" Titanium Outriggers

More Information Contact

- John Struble
 - E-mail: jstruble@nhtsa.dot.gov
 - Phone: (202) 493-0246